首页
平方公式什么时候学的(平方公式)
返回

平方公式什么时候学的(平方公式)

2023-01-01 精选经验 By:佚名
最佳答案大家好,小问来为大家解答以上问题。平方公式什么时候学的,平方公式这个很多人还不知道,现在让我们一起来看看吧!1、平方和公式 平方和公式n(n+1)(2n+1)/6 即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:N^2=N的平方) 证明1+4+9+…+n^2=N(N+1)(2N+1)/6 证法一(归纳猜想法): N=1时,1=1(1+1...

大家好,小问来为大家解答以上问题。平方公式什么时候学的,平方公式这个很多人还不知道,现在让我们一起来看看吧!

1、平方和公式  平方和公式n(n+1)(2n+1)/6  即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:N^2=N的平方)  证明1+4+9+…+n^2=N(N+1)(2N+1)/6   证法一(归纳猜想法):  N=1时,1=1(1+1)(2×1+1)/6=1   N=2时,1+4=2(2+1)(2×2+1)/6=5   设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6   则当N=x+1时,   1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2   =(x+1)[2(x2)+x+6(x+1)]/6   =(x+1)[2(x2)+7x+6]/6   =(x+1)(2x+3)(x+2)/6   =(x+1)[(x+1)+1][2(x+1)+1]/6   也满足公式   综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证。

2、   证法二(利用恒等式(n+1)^3=n^3+3n^2+3n+1):  (n+1)^3-n^3=3n^2+3n+1,   n^3-(n-1)^3=3(n-1)^2+3(n-1)+1   ..............................   3^3-2^3=3*(2^2)+3*2+1   2^3-1^3=3*(1^2)+3*1+   把这n个等式两端分别相加,得:   (n+1)^3-1=3(1^2+2^2+3^2+....+n^2)+3(1+2+3+...+n)+n,   由于1+2+3+...+n=(n+1)n/2,   代入上式得:   n^3+3n^2+3n=3(1^2+2^2+3^2+....+n^2)+3(n+1)n/2+n   整理后得:   1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6   a^2+b^2=a(a+b)-b(a-b)。

以上就是【平方公式什么时候学的,平方公式】相关内容。

猜你喜欢
梦想合伙人 豆瓣(关于梦想合伙人 豆瓣的基本详情介绍)

梦想合伙人 豆瓣(关于梦想合伙人 豆瓣的基本详情介绍)

01-02 0 阅读
红杉资本(关于红杉资本的基本详情介绍)

红杉资本(关于红杉资本的基本详情介绍)

01-02 0 阅读
舒淇玉女心经(关于舒淇玉女心经的基本详情介绍)

舒淇玉女心经(关于舒淇玉女心经的基本详情介绍)

12-30 0 阅读
极品家丁看完了(极品家丁续集)

极品家丁看完了(极品家丁续集)

01-04 0 阅读
哈娜(关于哈娜的基本详情介绍)

哈娜(关于哈娜的基本详情介绍)

12-30 0 阅读
乙醇钠和氢氧化钠的碱性比较(乙醇钠)

乙醇钠和氢氧化钠的碱性比较(乙醇钠)

01-03 0 阅读
热门推荐
梦想合伙人 豆瓣(关于梦想合伙人 豆瓣的基本详情介绍)

梦想合伙人 豆瓣(关于梦想合伙人 豆瓣的基本详情介绍)

01-02 0 阅读
红杉资本(关于红杉资本的基本详情介绍)

红杉资本(关于红杉资本的基本详情介绍)

01-02 0 阅读
舒淇玉女心经(关于舒淇玉女心经的基本详情介绍)

舒淇玉女心经(关于舒淇玉女心经的基本详情介绍)

12-30 0 阅读
极品家丁看完了(极品家丁续集)

极品家丁看完了(极品家丁续集)

01-04 0 阅读
哈娜(关于哈娜的基本详情介绍)

哈娜(关于哈娜的基本详情介绍)

12-30 0 阅读
乙醇钠和氢氧化钠的碱性比较(乙醇钠)

乙醇钠和氢氧化钠的碱性比较(乙醇钠)

01-03 0 阅读
人奶可以做奶酪吗(人奶可以做面膜吗)

人奶可以做奶酪吗(人奶可以做面膜吗)

01-04 0 阅读
请问新能源汽车需要保养吗?

请问新能源汽车需要保养吗?

12-11 0 阅读
哈根达斯蛋糕价格(关于哈根达斯蛋糕价格的基本详情介绍)

哈根达斯蛋糕价格(关于哈根达斯蛋糕价格的基本详情介绍)

01-01 0 阅读
废轮胎回收生意能做吗

废轮胎回收生意能做吗

09-01 0 阅读